728x90
반응형

MACHINE LEARNING/Machine Learning Library 12

ML(머신러닝) : Multiple Linear Regression 개념 정리 (regressor / ct 만들기 joblib 으로 pkl 파일로 저장하고 불러오기)

다중 선형 회귀(Multiple Linear Regression)는 두 개 이상의 독립 변수가 종속 변수에 미치는 영향을 분석하는 회귀 분석 방법이다. 단순 선형 회귀(Linear Regression)와 달리, 다중 선형 회귀는 종속 변수와 관련된 여러 개의 독립 변수를 사용하여 예측 모델을 구축한다. 아래처럼, 여러개의 features 를 기반으로, 수익을 예측하려 한다. 위와 같이, 여러개의 변수들을 통해, 수익과의 관계를 분석하고, 이를 통해, 새로운 데이터가 들어왔을 때, 수익이 어떻게 될 지를 예측하고자 한다. 아래는 하나의 변수일때와, 여러개의 변수가 있을때의 leaner regression 을 나타낸다. 2차원에서는 선 이지만, ..

ML(머신러닝) : Linear Regression 개념 정리 및 예제 regressor 만들기

경력과 연봉의 관계(스케터를 이용)를 분석하여, 경력이 주어졌을때 연봉을 예측하려 한다. 데이터를 살펴보니, 아래와 같은 그래프로 나왔다고 가정했을 때, 아래 그림처럼, 해당 분포를 만족하는 직선을 찾으려(데이터의 피팅되는 방적식을 찾는것) 하는것이 목표이다.직선을 찾기 위해서는 우리가 잘 아는 직선의 방정식을 이용하여, 직선의 기울기와 y절편을 구하면 되는것이다.여기에서 주의! x, y 가 우리에게 데이터셋으로 주어졌다. 따라서 우리는 b 를 찾아야 하는것이다.즉, b0, b1 의 값을 찾아 가는 과정을 학습이라고 부른다!그렇다면 학습이란??? 바로 error(오차)를 줄여 나가는 것이다. 아래는 오차를 나타낸다.그렇다면 오차(error)란? [오차 = 실제값 - 예측값 =>..

데이터 프리프로세싱(Data Preprocessing) : 스케일링의 StandardScaler(), MinMaxScaler() 과 train_test_split() 데이터 분리까지

# 전장에서 사용하였던 데이터프레임을 가지고와 이어서 진행 Age 와 Salary 는 같은 스케일이 아니다. Age 는 27 ~ 50 Salary 는 40k ~ 90k (만단위) # 유클리디언 디스턴스로 오차를 줄여 나가는데, 하나의 변수는 오차가 크고, 하나의 변수는 오차가 작으면, 나중에 오차를 수정할때 편중되게 된다. # 따라서 값의 레인지를 맞춰줘야 정확히 트레이닝 된다. 표준화 : 평균을 기준으로 얼마나 떨어져 있느냐? 같은 기준으로 만드는 방법, 음수도 존재, 데이터의 최대최소값 모를때 사용. 정규화 : 0 ~ 1 사이로 맞추는 것. 데이터의 위치 비교가 가능, 데이터의 최대최소값 알떄..

데이터 프리프로세싱(Data Preprocessing) : NaN 처리부터 LabelEncoder, OneHotEncoder 인코딩 까지

머신러닝 모델을 학습시키기 전에 데이터를 정제하고 준비하는 과정이 과정은 데이터의 품질을 향상시키고, 머신러닝 모델의 성능을 향상시키기 위해 필수적 데이터를 분석하여 어떻게 데이터를 분리할지 인코딩을 할지 확인 후, 1) NaN 처리 2) X, y 데이터 분리 : 학습할 변수와 레이블링 변수로 분리 2) 문자열 데이터 인코딩 : 원-핫 인코딩, 레이블 인코딩 등의 방법을 사용 3) 특성 스케일링 : 표준화(Standardization)나 정규화(Normalization) 등의 방법을 사용 4) 데이터셋을 Training 용과 Test 용으로 나눈다. import library # ..

Machine Learning 개념 정리

편지봉투에 손으로 쓴 우편번호 숫자 자동 판별 의료 영상 이미지에 기반한, 종양 판단 의심되는 신용카드 거래 감지 블로그 글의 주제 분류 고객들을 취향이 비슷한 그룹으로 묶기 가지고 이는 데이터가 내가 원하는 문제의 답을 가지고 있는가? 내 문제를 가장 잘 해결할 수 있는 머신러닝 방법은 무엇인가 문제를 풀기에 충분한 데이터를 모았는가? 머신러닝의 성과를 어떻게 측정할 것인가 레퍼런스 : https://www.youtube.com/watch?v=KDrys0OnVho 우리는 Iris꽃의 꽃잎의 길이와 넓이, 꽃받..

728x90
반응형