728x90
반응형

딥러닝 6

DL(딥러닝) 실습 : Prophet을 활용한 테슬라 주가 분석

# 테슬라 주가 데이터를 다운받아서 Prophet을 활용하여 분석해 보자.# 출처 : https://www.nasdaq.com/market-activity/stocks/tsla/historicalimport pandas as pddf = pd.read_csv('/content/HistoricalData_1713768604457.csv')df.info() # 분석을 좀더 용이하게 하기위해 컬럼명을 간결하게 변경df.columns = ['Date','Close','Volume','Open','High','Low' ]df.columns Index(['Date', 'Close', 'Volume', 'Open', 'High', 'Low'], dtype='object') # 테슬라 데이터라는 구분을 위해 ID 컬럼..

DL(딥러닝) : 데이터 증강 (Augmentation) 학습

# 데이터 증강(Augmentation)은 기계 학습에서 널리 사용되는 기술 중 하나로, 기존의 데이터를 변형하거나 조작하여 새로운 데이터를 생성하는 과정을 말한다.# 이는 모델의 일반화 성능을 향상시키고, 과적합을 줄이며, 데이터의 다양성을 증가시키는 데 사용 Cats v Dogs 로 다음처럼 모델링 하고, 학습시켜본다.4 convolutional layers with 32, 64, 128 and 128 convolutionstrain for 100 epochs # 리눅스에서 이미지 파일을 불러오는 명령어 wget# 구글은 리눅스 서버 환경임!wget --no-check-certificate \    https://storage.googleapis.com/mledu-datasets/cats_and_do..

DL(딥러닝) : CNN (Conv2D, MaxPooling2D, Flatten, Dense) 필터링으로 정확도 높이기

improving Computer Vision Accuracy using Convolutions지금까지 Deep Neural Network (DNN) 를 이용해서 패션 mnist 를 분류했다.정확도가, 트레이닝셋은 89% 정도이고 테스트셋으로는 87% 정도가 나왔다.이제 Convolutional Neural Networks 이용해서 정확도를 향상시켜본다. # 텐서플로우 import tensorflow as tffrom tensorflow.keras.datasets import fashion_mnist # 텐서플로우 트레인 테스트 파일 저장 방식 (X_train, y_train), (X_test, y_test) = fashion_mnist.load_data() X_train.shape(60000, 28, ..

DL(딥러닝) : Tensflow의 Fashion-MNIST 활용(DNN) (1)

Fashion-MNIST는 기계 학습 및 딥 러닝 연구를 위해 개발된 데이터셋 중 하나 카테고리: Fashion-MNIST는 10개의 카테고리로 구성되어 있습니다. 이 카테고리는 티셔츠, 바지, 스웨터, 드레스, 코트, 샌들, 셔츠, 운동화, 가방, 앵클 부츠 등의 의류와 액세서리를 포함합니다.이미지 크기: 모든 이미지는 28x28 픽셀의 흑백 이미지로 구성되어 있습니다. 각 픽셀 값은 0부터 255까지의 정수로 표현됩니다.데이터 분할: Fashion-MNIST는 60,000개의 훈련 이미지와 10,000개의 테스트 이미지로 구성되어 있습니다.Fashion-MNIST는 MNIST보다 조금 더 복잡하고 현실적인 문제를 모델링하기 위한 목적으로 설계됨.따라서 Fashion-MNIST는 이미지 분류, 특히 의..

DL(딥러닝) 실습 : validation_split 모델링 시각화 & EarlyStopping 콜백(callback) 사용 (자동차 연비 예측 ANN)

# Auto MPG 데이터셋을 사용하여 1970년대 후반과 1980년대 초반의 자동차 연비를 예측하는 모델을 만듭니다.# 이 정보에는 실린더 수, 배기량, 마력(horsepower), 공차 중량 같은 속성이 포함됩니다.import pandas as pdimport numpy as npimport matplotlib.pyplot as plt# 구글 드라이브 마운트from google.colab import drivedrive.mount('/content/drive') Mounted at /content/drive# Working Directory 설정 # 파일은 auto-mpg.csv 입니다.df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/ML2/dat..

Deep Learning 개념 정리

딥러닝이란? 딥러닝은 머신 러닝의 한 분야로, 인공 신경망(ANN)을 기반으로 한다. 여러 계층으로 이루어진 신경망을 사용하여 복잡한 패턴을 학습할 수 있다. 이름에서 '딥(깊은)'이라는 말이 사용되는 이유는, 신경망이 여러 계층으로 깊게 구성되어 있기 때문이다. 인공 신경망 (Artificial Neural Networks, ANN) 1. 뉴런 (Neuron): 인공 신경망의 기본 단위 입력 데이터와 가중치를 곱한 후, 활성화 함수를 적용하여 출력 값을 생성 2. 계층 (Layer): 인공 신경망은 여러 계층으로 구성된다. 입력 계층 (Input Layer): 입력 데이터를 받는 계층 은닉 계층 (Hidden Layer): 입력 계층과 출력 계층 사이에 있는 중간 계층. 여러 개의 은닉 계층을 가진 경..

728x90
반응형