728x90
반응형

분류 전체보기 206

Python Pandas로 데이터 다루기 : 데이터 액서스 .loc, .iloc 및 기본 인덱싱 방법

import pandas as pd # We create a list of Python dictionaries items2 = [{'bikes': 20, 'pants': 30, 'watches': 35}, {'watches': 10, 'glasses': 50, 'bikes': 15, 'pants':5}] # 상단에서 생성한 items2 딕셔너리를 데이터프레임으로 변환 df = pd.DataFrame(data= items2, index= ['store 1', 'store 2']) df ### 가장 중요한것!!! "데이터 프레임" 에서 원하는 데이터를 억세스 하는..

Python Pandas로 데이터 분석 시작하기 : DataFrame 기초

레이블로 생성하기 # 판다스의 2차원 데이터 처리는, 데이터 프레임으로 한다. (DataFrame) # 실제 데이터 분석에서는 csv 파일을 판다스의 데이터 프레임으로 읽어와서 작업한다. # 연습을 위해 예제로 데이터 프레임을 생성하여 분석해 보자. import pandas as pd # We create a dictionary of Pandas Series items = {'Bob' : pd.Series(data = [245, 25, 55], index = ['bike', 'pants', 'watch']), 'Alice' : pd.Series(data = [40, 110, 500, 45], index = ['book', 'glasses', 'bike', 'pants..

Python Pandas로 데이터 처리하기 : 시리즈의 레이블 접근과 산술 연산

# Pandas Series에서의 데이터 접근과 삭제 # 이전장에서 사용하였던 데이터를 사용하여 진행 groceries eggs 30 apples 6 milk Yes bread No dtype: object # 판다스에서는 인덱스 수를 계산하여 부를 필요없이 지정된 명칭을 사용하면 된다. groceries['eggs'] 30 groceries['bread'] 'No' # 따로 출력되는 값을 불러올때는, list 로 묶음 처리를 하여 활용 groceries[['eggs','bread']] eggs 30 bread No dtype: object groceries['apples' : 'bread'..

Python Pandas로 시작하는 데이터 분석 : Series 데이터 생성 pd.Series()

Pandas 의 장점 Allows the use of labels for rows and columns 기본적인 통계데이터 제공 NaN values 를 알아서 처리함. 숫자 문자열을 알아서 로드함. 데이터셋들을 merge 할 수 있음. It integrates with NumPy and Matplotlib # 파이썬의 라이브러리 # 판다스는 넘파이를 확장해서 만든 데이터 스트렉쳐 / numpy는 기계 친화적 (숫자로 구성됨) # 판다스는 넘파이를 포함하고 있다 import pandas as pd index = ['eggs', 'apples', 'milk', 'bread'] data = [30, 6, 'Yes', 'No'] # numpy에서 1차원 데이터 벡..

Python NumPy로 데이터 분석하기 : Boolean 연산부터 Broadcasting까지

Boolean 연산은 참(True) 또는 거짓(False) 값을 반환하는 연산을 말한다. NumPy에서는 이러한 Boolean 연산을 배열에 적용하여 각 요소의 조건을 평가할 수 있다. 예를 들어, 배열의 각 요소가 특정 조건을 만족하는지 여부를 판단하는 데 사용된다. 비교 연산자: == (equal), != (not equal), >, =, 80 array([[False, False, False, True, False], [False, False, True, False, True], [False, False, True, False, False], [False, False, False, False, False]]) x[ x > 80 ] # 난이도 중요도 최상! array([88..

Python NumPy 슬라이싱과 인덱싱 : 효율적인 데이터 접근 방법 ndarray[], copy() 활용

1. ndarray[start:end] 2. ndarray[start:] 3. ndarray[:end] # 뭐 부터 뭐 까지 => 3시 ~ 5시 # 3 : 5+1 # 홍길동이라는 이름을 예시로 원하는 인덱스 위치에 결과만 출력 fullname = '홍길동' fullname[1:2+1] '길동' # 어디서부터 시작해서 끝까지 fullname[1:] '길동' # 1차원 배열 생성 x = np.arange(2, 10+1) x x[2 : 5+1] => 2번 인덱스 위치부터 5번 위치까지 가져오기 array([4, 5, 6, 7]) # X 라는 다차원 배열에서 원하는 위치값 가져오기 array([[76, 95, 49, 98, 11], [19, 19, 29, 64, 80],..

Python Numpy로 데이터 분석하기: 최대값, 최소값, 평균 등 기초 통계 및 축(axis)별 연산

** 실습전 import 중요 ** import numpy as np import random # 데이터 전체에서 최대값, 최소값, 전체합, 전체평균, 표준편차, 중앙값을 구하세요 # 1부터 100 사이의 정수로 구성된 4행 5열 배열 생성 X = np.random.randint(1, 100+1, (4,5)) X array([[74, 46, 91, 68, 83], [29, 23, 66, 66, 86], [93, 89, 71, 16, 64], [ 4, 7, 84, 41, 4]]) # 최대값 X.max() 93 # 최소값 X.min() 4 # 모든 요소의 합계 X.sum() 1105 # 모든 요소의 평균값 X.mean() 55.25 # 표준 편차 X.std() 30.49077729412617 # 각 행렬 또..

728x90
반응형