728x90
반응형

DEEP LEARNING 12

DL(딥러닝) : Tensflow의 Fashion-MNIST 활용(DNN) (1)

Fashion-MNIST는 기계 학습 및 딥 러닝 연구를 위해 개발된 데이터셋 중 하나 카테고리: Fashion-MNIST는 10개의 카테고리로 구성되어 있습니다. 이 카테고리는 티셔츠, 바지, 스웨터, 드레스, 코트, 샌들, 셔츠, 운동화, 가방, 앵클 부츠 등의 의류와 액세서리를 포함합니다.이미지 크기: 모든 이미지는 28x28 픽셀의 흑백 이미지로 구성되어 있습니다. 각 픽셀 값은 0부터 255까지의 정수로 표현됩니다.데이터 분할: Fashion-MNIST는 60,000개의 훈련 이미지와 10,000개의 테스트 이미지로 구성되어 있습니다.Fashion-MNIST는 MNIST보다 조금 더 복잡하고 현실적인 문제를 모델링하기 위한 목적으로 설계됨.따라서 Fashion-MNIST는 이미지 분류, 특히 의..

DL(딥러닝) 실습 : validation_split 모델링 시각화 & EarlyStopping 콜백(callback) 사용 (자동차 연비 예측 ANN)

# Auto MPG 데이터셋을 사용하여 1970년대 후반과 1980년대 초반의 자동차 연비를 예측하는 모델을 만듭니다.# 이 정보에는 실린더 수, 배기량, 마력(horsepower), 공차 중량 같은 속성이 포함됩니다.import pandas as pdimport numpy as npimport matplotlib.pyplot as plt# 구글 드라이브 마운트from google.colab import drivedrive.mount('/content/drive') Mounted at /content/drive# Working Directory 설정 # 파일은 auto-mpg.csv 입니다.df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/ML2/dat..

DL(딥러닝) 실습 : keras.models Sequential/.layers Dense 활용한 차량 구매금액 예측

# PROBLEM STATEMENT # 다음과 같은 컬럼을 가지고 있는 데이터셋을 읽어서, 어떠한 고객이 있을때, 그 고객이 얼마정도의 차를 구매할 수 있을지를 예측하여, 그 사람에게 맞는 자동차를 보여주려 한다.Customer NameCustomer e-mailCountryGenderAgeAnnual SalaryCredit Card DebtNet Worth (순자산)# 예측하고자 하는 값 :Car Purchase AmountSTEP #0: 라이브러리 임포트 및 코랩 환경 설정import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as sns # csv 파일을 읽기 위해, 구글 드라이브 마운트 하시오from go..

DL(딥러닝) 실습 : Tensorflow의 keras를 활용한 ANN Deep Learning

# 금융상품 갱신 여부 예측하는 ANN# Churn_Modelling.csv 파일을 보면, 고객 정보와 해당 고객이 금융상품을 갱신했는지 안했는지의 여부에 대한 데이터가 있다.# 이 데이터를 가지고 갱신여부를 예측하는 딥러닝을 구성하시오.# 실습은 구글 Colab을 사용하여 진행한다. # Importing the librariesimport numpy as npimport matplotlib.pyplot as pltimport pandas as pdimport seaborn as sb # 데이터 불러오는 방법은 이전장에서 설명했던 방법중 내 구글 드라이브에 csv 파일을 갖다놓고, 코랩을 연경실키는 방법을 사용.from google.colab import drive drive.mount('/content..

Deep Learning 개념 정리

딥러닝이란? 딥러닝은 머신 러닝의 한 분야로, 인공 신경망(ANN)을 기반으로 한다. 여러 계층으로 이루어진 신경망을 사용하여 복잡한 패턴을 학습할 수 있다. 이름에서 '딥(깊은)'이라는 말이 사용되는 이유는, 신경망이 여러 계층으로 깊게 구성되어 있기 때문이다. 인공 신경망 (Artificial Neural Networks, ANN) 1. 뉴런 (Neuron): 인공 신경망의 기본 단위 입력 데이터와 가중치를 곱한 후, 활성화 함수를 적용하여 출력 값을 생성 2. 계층 (Layer): 인공 신경망은 여러 계층으로 구성된다. 입력 계층 (Input Layer): 입력 데이터를 받는 계층 은닉 계층 (Hidden Layer): 입력 계층과 출력 계층 사이에 있는 중간 계층. 여러 개의 은닉 계층을 가진 경..

728x90
반응형