DEEP LEARNING/Deep Learning Library

DL(딥러닝) : Tensflow의 Fashion-MNIST 활용(DNN) (2)

신강희 2024. 4. 30. 15:47
반응형

< softmax / sparse_categorical_crossentropy 활용 >

# Reshaping of the dataset

# 이미지 파일을 학습시키려면 28, 28 행열 데이터를 한행의 형태로 변환해 주어야 한다. + 그리고 이미지의 개수가 행개수로 전환되면서 우리가 학습시키는 데이터 프레임 형태가 되는것이다.
# 총 784개의 컬럼을 가진 한행으로 변환해 주어야 하는데 이미 라이브러리로 생성되어있어서 활용하면 된다.

# X_train을 예로들면 해당 함수로 변환을 했을경우 6만개의 이미지이므로 행은 6만 컬럼이 784개가 되는것 => Flatten()을 이용하여 학습가능한 형태로 효율적이게 학습시키는것이고 학습이 종료되면 최종적으로는 3차원 데이터로 학습이 되는것!!!

28*28

784

 

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten

 

# 3개 이상의 분류를 할때는 softmax 와 compile은 sparse_categorical_crossentropy를 사용한다.

 

def build_model() :

model = Sequential()

model.add( Flatten() )

model.add( Dense(128, 'relu') )

model.add( Dense (10, 'softmax'))

model.compile('adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

return model

 

# Adding the second layer (output layer)

  • units == number of classes (10 in the case of Fashion MNIST)
  • activation = 'softmax'

# Comiling the model

  • Optimizer: Adam
  • Loss: Sparse softmax (categorical) crossentropy

model = build_model()

 

# Training the model

# early stop 을 이용해서 학습시키세요. pacience 는 10으로 ~

 

early_stop = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=10)

epoch_history = model.fit(X_train, y_train, epochs= 1000, validation_split= 0.2, callbacks= [early_stop])

ㄴ 19번에서 학습 종료됨

 

# 차트까지 그리세요.

# 1. loss와 val_loss

# 2. accuracy 와 val_accuracy

 

import matplotlib.pyplot as plt

 

plt.plot(epoch_history.history['loss'])

plt.plot(epoch_history.history['val_loss'])

plt.legend(['loss','val_loss'])

plt.show()

 

plt.plot(epoch_history.history['accuracy'])

plt.plot(epoch_history.history['val_accuracy'])

plt.legend(['accuracy','val_accuracy'])

plt.show()

 

# Model evaluation and prediction

# 최종 시험 (예측)

 

model.evaluate(X_test, y_test)

313/313 [==============================] - 1s 3ms/step - loss: 0.3909 - accuracy: 0.8761
[0.3909175395965576, 0.8761000037193298]

 

# 실제 새로운 데이터가 들어왔다는 가정하에 평가를 해본다면?

# 26번째 이미지를 가져와서 예측해 봅시다.

 

X_test[ 25, : , : ]

array([[0.        , 0.        , 0.        , 0.        , 0.        ,
        0.        , 0.        , 0.        , 0.        , 0.        ,
        0.31372549, 0.0745098 , 0.        , 0.        , 0.        ,
        0.        , 0.        , 0.        , 0.03137255, 0.        ,
        0.        , 0.        , 0.        , 0.00392157, 0.        ,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        , 0.        ,
        0.        , 0.        , 0.00392157, 0.16862745, 0.17647059,
        0.45490196, 1.        , 0.70196078, 0.49411765, 0.49411765,
        0.50196078, 0.70196078, 0.96862745, 0.49411765, 0.21960784,
        0.12156863, 0.        , 0.        , 0.        , 0.        ,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        , 0.        ,
        0.        , 0.05882353, 0.26666667, 0.22745098, 0.21960784,
        0.01960784, 0.36862745, 0.82745098, 0.88627451, 0.72156863,
        0.84705882, 0.83921569, 0.45490196, 0.01960784, 0.21960784,
        0.28627451, 0.18431373, 0.        , 0.        , 0.        ,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        , 0.        ,
        0.        , 0.23921569, 0.16862745, 0.1372549 , 0.16862745,
        0.21176471, 0.06666667, 0.00392157, 0.17647059, 0.46666667,
        0.21960784, 0.03137255, 0.03921569, 0.19215686, 0.15686275,
        0.14117647, 0.26666667, 0.04705882, 0.        , 0.        ,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.00392157, 0.        ,
        0.05882353, 0.30196078, 0.17647059, 0.16862745, 0.17647059,
        0.19215686, 0.22745098, 0.21176471, 0.11372549, 0.16862745,
        0.20392157, 0.21960784, 0.23921569, 0.19215686, 0.17647059,
        0.15686275, 0.21176471, 0.12156863, 0.        , 0.        ,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        , 0.        ,
        0.15686275, 0.2745098 , 0.16862745, 0.19215686, 0.2       ,
        0.19215686, 0.20392157, 0.21176471, 0.14117647, 0.1372549 ,
        0.23921569, 0.2       , 0.19215686, 0.17647059, 0.16862745,
        0.16470588, 0.19215686, 0.21176471, 0.        , 0.        ,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        , 0.        ,
        0.23921569, 0.28235294, 0.18431373, 0.19215686, 0.19215686,
        0.18431373, 0.20392157, 0.15686275, 0.23921569, 0.35686275,
        0.14117647, 0.21960784, 0.18431373, 0.18431373, 0.17647059,
        0.17647059, 0.21176471, 0.23921569, 0.00392157, 0.        ,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        , 0.02745098,
        0.28235294, 0.3372549 , 0.23137255, 0.21176471, 0.19215686,
        0.16470588, 0.15686275, 0.17647059, 0.15686275, 0.22745098,
        0.23137255, 0.14901961, 0.14901961, 0.16862745, 0.15686275,
        0.17647059, 0.25882353, 0.22745098, 0.09411765, 0.        ,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        , 0.0745098 ,
        0.34117647, 0.41960784, 0.25490196, 0.2       , 0.21176471,
        0.2       , 0.16862745, 0.20392157, 0.11372549, 0.2       ,
        0.22745098, 0.18431373, 0.19215686, 0.19215686, 0.16470588,
        0.21176471, 0.26666667, 0.22745098, 0.12941176, 0.        ,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        , 0.12941176,
        0.36470588, 0.45490196, 0.21176471, 0.23921569, 0.2       ,
        0.23921569, 0.19215686, 0.18431373, 0.2       , 0.23137255,
        0.16862745, 0.2       , 0.21176471, 0.17647059, 0.21960784,
        0.35686275, 0.30196078, 0.23921569, 0.16470588, 0.        ,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        , 0.2       ,
        0.32156863, 0.54117647, 0.28235294, 0.23921569, 0.21176471,
        0.24705882, 0.19215686, 0.1372549 , 0.41960784, 0.48235294,
        0.1372549 , 0.21176471, 0.24705882, 0.12941176, 0.25882353,
        0.50980392, 0.3372549 , 0.23921569, 0.2       , 0.        ,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        , 0.23921569,
        0.25882353, 0.65882353, 0.25490196, 0.17647059, 0.22745098,
        0.25882353, 0.18431373, 0.17647059, 0.24705882, 0.32156863,
        0.15686275, 0.23921569, 0.25490196, 0.12156863, 0.2745098 ,
        0.58431373, 0.4       , 0.21176471, 0.23921569, 0.        ,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.02745098, 0.25882353,
        0.14901961, 0.72156863, 0.34901961, 0.11372549, 0.25490196,
        0.2745098 , 0.17647059, 0.19215686, 0.21176471, 0.50196078,
        0.12941176, 0.23921569, 0.25882353, 0.15686275, 0.14901961,
        0.61176471, 0.50196078, 0.12156863, 0.25490196, 0.        ,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.05882353, 0.2745098 ,
        0.09411765, 0.74901961, 0.54117647, 0.05490196, 0.2745098 ,
        0.32156863, 0.16470588, 0.19215686, 0.34901961, 0.60392157,
        0.09411765, 0.2745098 , 0.25882353, 0.15686275, 0.0745098 ,
        0.63137255, 0.56862745, 0.08627451, 0.29411765, 0.00392157,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.0745098 , 0.28627451,
        0.14901961, 0.70196078, 0.63137255, 0.01176471, 0.26666667,
        0.37647059, 0.15686275, 0.2       , 0.26666667, 0.75686275,
        0.09411765, 0.32156863, 0.2745098 , 0.17647059, 0.02745098,
        0.65490196, 0.63137255, 0.05490196, 0.30980392, 0.03921569,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.12156863, 0.23137255,
        0.28627451, 0.58431373, 0.81960784, 0.01960784, 0.25882353,
        0.39215686, 0.14901961, 0.22745098, 0.2       , 0.65882353,
        0.10196078, 0.36862745, 0.25490196, 0.18431373, 0.01960784,
        0.58431373, 0.66666667, 0.03921569, 0.36470588, 0.04705882,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.14901961, 0.14901961,
        0.46666667, 0.62745098, 0.49411765, 0.03137255, 0.21176471,
        0.39215686, 0.19215686, 0.22745098, 0.16470588, 0.32941176,
        0.1372549 , 0.41960784, 0.2       , 0.20392157, 0.05882353,
        0.42745098, 0.71372549, 0.02745098, 0.42745098, 0.02745098,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.10196078, 0.15686275,
        0.39215686, 0.72156863, 0.32156863, 0.09411765, 0.21176471,
        0.52941176, 0.21176471, 0.14901961, 0.43137255, 0.32941176,
        0.15686275, 0.49411765, 0.20392157, 0.2       , 0.09411765,
        0.2       , 0.77647059, 0.18431373, 0.41960784, 0.05490196,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.10196078, 0.23921569,
        0.16470588, 0.90196078, 0.44705882, 0.14901961, 0.20392157,
        0.69411765, 0.28235294, 0.16470588, 0.25882353, 0.30980392,
        0.20392157, 0.57647059, 0.32941176, 0.23921569, 0.25882353,
        0.2       , 0.34117647, 0.39215686, 0.35686275, 0.08235294,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.09411765, 0.22745098,
        0.05882353, 0.95686275, 0.37647059, 0.05882353, 0.17647059,
        0.48627451, 0.28627451, 0.19215686, 0.2       , 0.2745098 ,
        0.23921569, 0.49411765, 0.1372549 , 0.21176471, 0.15686275,
        0.20392157, 0.28235294, 0.54117647, 0.30196078, 0.12941176,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.12941176, 0.18431373,
        0.05490196, 0.79215686, 0.26666667, 0.10980392, 0.22745098,
        0.59215686, 0.31372549, 0.2       , 0.36470588, 0.23137255,
        0.31372549, 0.57647059, 0.1372549 , 0.26666667, 0.16862745,
        0.12941176, 0.32941176, 0.6745098 , 0.2       , 0.16470588,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.16470588, 0.21176471,
        0.05490196, 0.81960784, 0.21960784, 0.23921569, 0.23137255,
        0.52156863, 0.42745098, 0.20392157, 0.48627451, 0.16470588,
        0.37647059, 0.61176471, 0.12941176, 0.34117647, 0.2745098 ,
        0.06666667, 0.45490196, 0.62745098, 0.12941176, 0.17647059,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.14117647, 0.16862745,
        0.04705882, 0.64705882, 0.06666667, 0.22745098, 0.2745098 ,
        0.45490196, 0.41176471, 0.28235294, 0.14901961, 0.31372549,
        0.4       , 0.63921569, 0.08235294, 0.35686275, 0.29411765,
        0.01176471, 0.52941176, 0.66666667, 0.12156863, 0.2       ,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.25882353, 0.24705882,
        0.24705882, 0.80392157, 0.43921569, 0.43137255, 0.58431373,
        0.49411765, 0.31372549, 0.25490196, 0.40392157, 0.40392157,
        0.43137255, 0.61176471, 0.30196078, 0.49411765, 0.41176471,
        0.3372549 , 0.35686275, 0.61960784, 0.19215686, 0.21960784,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.2745098 , 0.28235294,
        0.41960784, 0.02745098, 0.32156863, 0.28235294, 0.26666667,
        0.22745098, 0.52941176, 0.6745098 , 0.48627451, 0.8       ,
        0.52156863, 0.28235294, 0.2745098 , 0.3372549 , 0.32941176,
        0.18431373, 0.05490196, 0.56862745, 0.21960784, 0.25490196,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.25490196, 0.1372549 ,
        0.43921569, 0.01960784, 0.        , 0.        , 0.        ,
        0.        , 0.10196078, 0.28235294, 0.        , 0.09411765,
        0.0745098 , 0.        , 0.        , 0.        , 0.        ,
        0.        , 0.        , 0.65490196, 0.23137255, 0.2745098 ,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.08235294, 0.08627451,
        0.2       , 0.03137255, 0.        , 0.        , 0.        ,
        0.        , 0.05882353, 0.10196078, 0.01176471, 0.        ,
        0.11372549, 0.        , 0.        , 0.        , 0.00392157,
        0.        , 0.00392157, 0.21176471, 0.10980392, 0.05882353,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        , 0.        ,
        0.        , 0.        , 0.        , 0.        , 0.        ,
        0.        , 0.01176471, 0.        , 0.        , 0.12941176,
        0.16470588, 0.        , 0.        , 0.        , 0.00392157,
        0.        , 0.        , 0.        , 0.        , 0.        ,
        0.        , 0.        , 0.        ]])

 

# 이미지를 보여주는 명령어 plt.imshow

plt.imshow(X_test[25, : , : ] , cmap = 'gray')

plt.show()

 

# 정답을 봐보면 4는 코트이다. y_test에 정답이 저장되어 있으니까 여기서 확인

y_test[25]

4

 

# 진짜 인공지능도 4로 예측해 내는지 봐보자

model.predict(X_test[25, : , : ])

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-31-affac9f9c8a7> in <cell line: 2>()
      1 # 진짜 인공지능도 4로 예측해 내는지 봐보자
----> 2 model.predict(X_test[25, : , : ])


1 frames
/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py in tf__predict_function(iterator)
     13                 try:
     14                     do_return = True
---> 15                     retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope)
     16                 except:
     17                     do_return = False

ValueError: in user code:

    File "/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py", line 2440, in predict_function  *
        return step_function(self, iterator)
    File "/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py", line 2425, in step_function  **
        outputs = model.distribute_strategy.run(run_step, args=(data,))
    File "/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py", line 2413, in run_step  **
        outputs = model.predict_step(data)
    File "/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py", line 2381, in predict_step
        return self(x, training=False)
    File "/usr/local/lib/python3.10/dist-packages/keras/src/utils/traceback_utils.py", line 70, in error_handler
        raise e.with_traceback(filtered_tb) from None
    File "/usr/local/lib/python3.10/dist-packages/keras/src/engine/input_spec.py", line 280, in assert_input_compatibility
        raise ValueError(

    ValueError: Exception encountered when calling layer 'sequential_1' (type Sequential).
    
    Input 0 of layer "dense_2" is incompatible with the layer: expected axis -1 of input shape to have value 784, but received input with shape (None, 28)
    
    Call arguments received by layer 'sequential_1' (type Sequential):
      • inputs=tf.Tensor(shape=(None, 28), dtype=float32)
      • training=False
      • mask=None

 

# 에러가 발생된다

 

# 에러가 뜨는 이유는 학습은 3차원 데이터로 했기 때문에 [60000 , 28, 28] 이형태로

# 그래서 다시 reshape을 통해 3차원으로 만들어준후 예측 시켜야 한다.

# X_test의 shape을 보고 3차원으로 학습

 

X_test[25, :, :].shape

(28, 28)

 

y_pred = model.predict(X_test[25, : , : ].reshape(1, 28, 28))

1/1 [==============================] - 0s 45ms/step

 

y_pred

array([[1.8778677e-03, 8.7685635e-07, 5.5940288e-01, 6.3805523e-06,
        4.0627635e-01, 5.2395297e-09, 3.2431990e-02, 5.1623363e-08,
        3.3407912e-06, 1.3304719e-07]], dtype=float32)

 

# 1을 가지고 확률에 따라 10개의 닶으로 출력해준것

y_pred.sum()

0.9999999

 

# 결과가 10개인데, 가장 숫자가 높은것의 인덱스를 찾으면 된다.

y_pred.max()

0.5594029

 

# 맥스값의 인덱스를 찾는 함수

y_pred.argmax()

2

 

# 인공지능은 2 = Pullover 로 잘못인식한걸 알수있다.

 

## Confusion Matrix 를 확인해야 한다. ##

from sklearn.metrics import confusion_matrix, accuracy_score

 

y_pred = model.predict(X_test)

313/313 [==============================] - 1s 4ms/step

 

y_pred = y_pred.argmax(axis=1)

y_pred

array([9, 2, 1, ..., 8, 1, 5])

 

y_test

array([9, 2, 1, ..., 8, 1, 5], dtype=uint8)

 

cm = confusion_matrix(y_test,y_pred)

cm

array([[904,   3,  13,  10,   4,   0,  52,   0,  14,   0],
       [  7, 970,   2,  13,   5,   0,   2,   0,   1,   0],
       [ 58,   0, 760,   8,  89,   0,  79,   0,   6,   0],
       [ 63,   3,  16, 846,  36,   1,  26,   0,   9,   0],
       [  8,   1,  86,  29, 756,   0, 109,   0,  11,   0],
       [  1,   0,   0,   1,   0, 954,   0,  24,   1,  19],
       [191,   0,  53,  21,  45,   0, 674,   0,  16,   0],
       [  0,   0,   0,   0,   0,  10,   0, 969,   2,  19],
       [  5,   0,   5,   2,   0,   3,   5,   5, 975,   0],
       [  0,   0,   0,   0,   0,   7,   1,  39,   0, 953]])

 

np.diagonal(cm).sum() / cm.sum()

0.8761

 

Stage 5 : Saving the model

# Saving the architecture

 

# 머신러닝은 sklearn 라이브러리를 사용했고 저장 방법은 joblib 라이브러리를 사용하였다. (이렇게 라이브러리 명칭을 대답할줄 알아야 한다. 이건 외워야함!!!)

# 텐서플로우는 딥러닝을위한 가장 대표적인 라이브러리중 하나 나머지 하나는 페이스북에서 개발

 

# 텐서플로우는 자체 저장 명령어가 있다.

# 1. 모델을 폴더로 저장하는 방법

model.save('my_model')

 

# 불러오기

my_model = tf.keras.models.load_model('my_model')

 

my_model

<keras.src.engine.sequential.Sequential at 0x7cfad2588580>

 

my_model.predict(X_test)
313/313 [==============================] - 1s 2ms/step
array([[4.46752324e-09, 1.61801045e-10, 1.37093503e-09, ...,
        2.12868862e-02, 3.13661914e-08, 9.78708565e-01],
       [2.90218828e-04, 1.16264203e-13, 9.99315679e-01, ...,
        5.95844762e-10, 1.49318402e-09, 2.46942137e-12],
       [1.97104811e-12, 9.99999940e-01, 1.87106104e-17, ...,
        1.43382710e-31, 2.70476234e-15, 7.68003626e-29],
       ...,
       [1.67075012e-08, 7.57680977e-16, 7.88335353e-09, ...,
        3.36046126e-14, 9.99999702e-01, 4.33934119e-17],
       [8.93007557e-10, 9.99995887e-01, 1.42211885e-11, ...,
        1.25967238e-19, 7.32785166e-10, 5.95051022e-16],
       [3.47720146e-07, 1.65205805e-08, 8.10090341e-07, ...,
        2.51163822e-03, 9.56516760e-06, 4.19787739e-06]], dtype=float32)

 

# 2. 파일로 저장
model.save( 'my_model.h5' )

 

/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py:3103: UserWarning: You are saving your model as an HDF5 file via `model.save()`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')`. saving_api.save_model(

 

# 불러오기
 
my_model2 = tf.keras.models.load_model('my_model.h5')
my_model2.predict(X_test)
313/313 [==============================] - 1s 2ms/step
array([[4.46752324e-09, 1.61801045e-10, 1.37093503e-09, ...,
        2.12868862e-02, 3.13661914e-08, 9.78708565e-01],
       [2.90218828e-04, 1.16264203e-13, 9.99315679e-01, ...,
        5.95844762e-10, 1.49318402e-09, 2.46942137e-12],
       [1.97104811e-12, 9.99999940e-01, 1.87106104e-17, ...,
        1.43382710e-31, 2.70476234e-15, 7.68003626e-29],
       ...,
       [1.67075012e-08, 7.57680977e-16, 7.88335353e-09, ...,
        3.36046126e-14, 9.99999702e-01, 4.33934119e-17],
       [8.93007557e-10, 9.99995887e-01, 1.42211885e-11, ...,
        1.25967238e-19, 7.32785166e-10, 5.95051022e-16],
       [3.47720146e-07, 1.65205805e-08, 8.10090341e-07, ...,
        2.51163822e-03, 9.56516760e-06, 4.19787739e-06]], dtype=float32)

 

 

# Saving network weights

# 신경망 가중치를 따로 저장 weights
# list의 형태다
 
model.get_weights()
[array([[ 0.02271761, -0.2944991 , -0.028769  , ..., -0.18715937,
          0.19192332,  0.2322523 ],
        [-0.16128081, -0.25424585,  0.04745227, ..., -0.15369563,
          0.14395876,  0.5085935 ],
        [-0.2782905 , -0.41959402, -0.40722004, ..., -0.04274533,
          0.57243055,  0.54744416],
        ...,
        [-0.26362264,  0.05695564,  0.08411638, ...,  0.36927092,
          0.04152898, -0.2204325 ],
        [-0.1484456 ,  0.28268155,  0.03771231, ...,  0.34078935,
         -0.28301492,  0.23884548],
        [-0.11412988,  0.1903053 ,  0.01186595, ..., -0.10899477,
          0.6243985 ,  0.35144082]], dtype=float32),
 array([ 0.75177175,  0.15053117,  0.05497442,  0.24826758,  0.03845606,
        -0.7300624 ,  0.4869345 ,  0.1645856 ,  0.17036699,  0.42226842,
         0.41258374,  0.09502481,  0.29047352, -0.29723576,  0.28523856,
         0.3165303 ,  0.67179143, -0.1871576 , -0.00964195,  0.19892164,
         0.42491758, -0.09066594,  0.00101652,  0.00962504,  0.3880595 ,
         0.6492963 ,  0.19307303,  0.45541507, -0.02264952,  0.41349387,
         0.4517958 ,  1.0011144 ,  0.59834266,  0.44533563, -0.07932588,
         0.3370073 ,  0.6208751 , -0.18764398,  0.00407016,  0.17869467,
        -0.11198997, -0.0361215 ,  0.6790055 , -0.00460031,  0.43578   ,
        -0.46660697,  0.46700534,  0.2056715 ,  0.66340035,  0.3952845 ,
         0.5896454 ,  0.06977251, -0.01740523,  0.01954206,  0.35846254,
         0.1498976 ,  0.67616636,  0.3265582 ,  0.18628041,  0.1672784 ,
         0.00305305,  0.12351997,  0.38389504,  0.12288803, -0.04645132,
         0.46931618, -0.00837302,  0.4796714 ,  0.5868239 ,  0.17116618,
         0.606803  , -0.19410375,  0.34444407, -0.53573734,  0.27141973,
         0.03390748, -0.15060744,  0.14072667,  0.56889963,  0.40626645,
         0.50931984,  0.16865733,  0.05080958,  0.48633102,  0.28172195,
         0.6091963 ,  0.2564431 ,  0.37471884,  0.9118793 ,  0.29310408,
        -0.09859752,  0.02514499, -0.21432124,  0.20730704,  0.03468078,
         0.8103517 ,  0.47006375,  0.38234246, -0.31862065, -0.39394513,
         0.24012381, -0.26132187, -0.00850173,  0.04642827, -0.26364726,
        -0.02267468,  0.20497516,  0.33909145,  0.6142679 , -0.01869328,
         0.27655303,  0.21719427,  0.16408785,  0.45002368,  0.08043167,
         0.13827091,  0.6299317 , -0.55418956,  0.70523894,  0.49942005,
         0.0654535 ,  0.11457346, -0.00878259, -0.3879141 ,  0.30698878,
        -0.4051954 ,  0.583928  ,  0.15949349], dtype=float32),
 array([[-0.7504998 ,  0.55274314, -0.92340475, ...,  0.4010444 ,
         -0.07803065, -0.11273979],
        [-0.0514105 , -0.12080448,  0.14470707, ...,  0.12397166,
          0.30801663,  0.11526827],
        [ 0.1977766 ,  0.4952558 ,  0.21364571, ..., -1.2675058 ,
         -0.3558461 , -0.86395127],
        ...,
        [ 0.05692434, -0.5130418 ,  0.06031365, ..., -0.44894597,
          0.28305897,  0.39578396],
        [ 0.17060135, -0.1262132 , -0.41282275, ..., -1.1019056 ,
         -1.171807  ,  0.27185997],
        [-0.5375802 , -0.5694138 ,  0.24222554, ..., -0.28896615,
          0.097293  , -0.29430112]], dtype=float32),
 array([-0.05129086, -0.35894313,  0.17791821,  0.30031106, -0.34605718,
         0.07993025,  0.1875695 ,  0.12199341, -0.10508378, -0.43523654],
       dtype=float32)]

 

model.save_weights('my_model_weights.h5')

 

다음 게시글로 계속

728x90
반응형