머신러닝 모델을 학습시키기 전에 데이터를 정제하고 준비하는 과정이 과정은 데이터의 품질을 향상시키고, 머신러닝 모델의 성능을 향상시키기 위해 필수적 데이터를 분석하여 어떻게 데이터를 분리할지 인코딩을 할지 확인 후, 1) NaN 처리 2) X, y 데이터 분리 : 학습할 변수와 레이블링 변수로 분리 2) 문자열 데이터 인코딩 : 원-핫 인코딩, 레이블 인코딩 등의 방법을 사용 3) 특성 스케일링 : 표준화(Standardization)나 정규화(Normalization) 등의 방법을 사용 4) 데이터셋을 Training 용과 Test 용으로 나눈다. import library # ..