MACHINE LEARNING/Machine Learning Library

ML(머신러닝) : KNN 개념 정리 및 sklearn 라이브러리의 KNeighborsClassifier 만들기

신강희 2024. 4. 22. 01:27
반응형

< K-Nearest Neighbor >

# K-Nearest Neighbors (K-NN)는 지도 학습 알고리즘 중 하나로, 학습 데이터셋 내에서 새로운 데이터 포인트와 가장 가까운 k개의 이웃을 찾아 해당 이웃들의 라벨 또는 값을 기반으로 예측을 수행

# Logistic Regression과 같은 분류형

< KNN 알고리즘 >

내 주위에 몇개의 이웃을 확인해 볼것인가를 결정한다. => K

새로운 데이터가 발생 시, Euclidean distance 에 의해서, 가장 가까운 K 개의 이웃을 택한다.

K 개의 이웃의 카테고리를 확인한다.

카테고리의 숫자가 많은 쪽으로, 새로운 데이터의 카테고리를 정해버린다.

< 예제문을 통해서 코딩해 보자>

import pandas as pd

 

# Logistic Regression 분류때 사용하였던 데이터를 가지고 연습해보자

df = pd.read_csv('../data/Social_Network_Ads.csv')

 

# NaN은 이전에 없던것이 확인된 데이터여서 스킵하고, X,y 분류

y = df['Purchased']

X = df.loc [ : , 'Age' : 'EstimatedSalary' ]

 

# 문자열 데이터는 없으므로 인코딩 제외하고 피쳐 스케일링 진행

from sklearn.preprocessing import StandardScaler

scaler_X = StandardScaler()

 

X = scaler_X.fit_transform(X)

X

array([[-1.78179743, -1.49004624],
       [-0.25358736, -1.46068138],
       [-1.11320552, -0.78528968],
       [-1.01769239, -0.37418169],
       [-1.78179743,  0.18375059],
       [-1.01769239, -0.34481683],
       [-1.01769239,  0.41866944],
       [-0.54012675,  2.35674998],
       [-1.20871865, -1.07893824],
       [-0.25358736, -0.13926283],
       [-1.11320552,  0.30121002],
       [-1.11320552, -0.52100597],
       [-1.6862843 ,  0.47739916],
       [-0.54012675, -1.51941109],
       [-1.87731056,  0.35993973],
       [-0.82666613,  0.30121002],
       [ 0.89257019, -1.3138571 ],
       [ 0.70154394, -1.28449224],
       [ 0.79705706, -1.22576253],
       [ 0.98808332, -1.19639767],
       [ 0.70154394, -1.40195167],
       [ 0.89257019, -0.60910054],
       [ 0.98808332, -0.84401939],
       [ 0.70154394, -1.40195167],
       [ 0.79705706, -1.37258681],
       [ 0.89257019, -1.46068138],
       [ 1.08359645, -1.22576253],
       [ 0.89257019, -1.16703281],
       [-0.82666613, -0.78528968],
       [-0.63563988, -1.51941109],
       [-0.63563988,  0.12502088],
       [-1.01769239,  1.97500684],
       [-1.59077117, -1.5781408 ],
       [-0.92217926, -0.75592482],
       [-1.01769239,  0.59485858],
       [-0.25358736, -1.25512738],
       [-0.44461362, -1.22576253],
       [-0.73115301, -0.60910054],
       [-1.11320552,  0.06629116],
       [-1.01769239, -1.13766796],
       [-1.01769239, -1.54877595],
       [-0.44461362, -0.55037082],
       [-0.25358736,  1.123426  ],
       [-0.73115301, -1.60750566],
       [-0.92217926,  0.41866944],
       [-1.39974491, -1.46068138],
       [-1.20871865,  0.27184516],
       [-1.01769239, -0.46227625],
       [-0.73115301,  1.91627713],
       [-0.63563988,  0.56549373],
       [-1.30423178, -1.1083031 ],
       [-1.87731056, -0.75592482],
       [-0.82666613,  0.38930459],
       [-0.25358736, -1.37258681],
       [-1.01769239, -0.34481683],
       [-1.30423178, -0.4329114 ],
       [-1.39974491, -0.63846539],
       [-0.92217926,  0.27184516],
       [-1.49525804, -1.51941109],
       [-0.54012675,  1.38770971],
       [-1.01769239, -1.46068138],
       [-1.20871865,  0.50676401],
       [-1.39974491, -0.10989798],
       [-0.54012675,  1.47580428],
       [ 2.03872775,  0.38930459],
       [-1.30423178, -0.34481683],
       [-1.30423178, -1.49004624],
       [-1.39974491,  0.35993973],
       [-1.49525804, -0.19799255],
       [-0.63563988, -0.05116826],
       [-1.20871865,  0.30121002],
       [-1.30423178, -1.25512738],
       [-1.6862843 , -1.37258681],
       [-0.44461362,  1.27025028],
       [-0.54012675, -1.51941109],
       [-0.34910049,  1.24088543],
       [-1.87731056, -0.52100597],
       [-1.49525804, -1.25512738],
       [-0.92217926,  0.50676401],
       [-1.11320552, -1.54877595],
       [-0.73115301,  0.30121002],
       [ 0.12846516, -0.81465453],
       [-1.6862843 , -0.60910054],
       [-0.25358736,  0.53612887],
       [-0.73115301, -0.2273574 ],
       [-0.63563988,  1.41707457],
       [-1.30423178, -0.4329114 ],
       [-0.92217926,  0.4480343 ],
       [-1.11320552,  0.33057487],
       [-0.25358736, -0.57973568],
       [-1.49525804,  0.33057487],
       [-0.73115301,  1.35834485],
       [-1.11320552, -1.60750566],
       [-0.82666613, -1.22576253],
       [-0.82666613,  0.38930459],
       [-0.25358736, -0.75592482],
       [-0.25358736, -1.3138571 ],
       [-0.92217926,  1.56389885],
       [-0.25358736,  0.09565602],
       [-0.92217926, -0.96147882],
       [-1.01769239,  0.53612887],
       [-0.92217926, -0.31545197],
       [-0.54012675,  0.47739916],
       [-0.44461362,  2.32738512],
       [-1.78179743, -1.43131652],
       [-1.59077117,  0.06629116],
       [-1.11320552, -1.02020853],
       [-1.01769239,  0.56549373],
       [-1.11320552,  0.47739916],
       [ 0.03295203,  0.30121002],
       [ 0.12846516,  0.03692631],
       [-0.0625611 ,  0.03692631],
       [ 0.03295203, -0.25672226],
       [-0.0625611 , -0.4329114 ],
       [ 0.41500455,  0.30121002],
       [ 0.22397829, -0.37418169],
       [-0.25358736,  0.15438573],
       [-0.15807423, -0.52100597],
       [ 0.22397829, -0.31545197],
       [ 0.31949142, -0.31545197],
       [-0.15807423,  0.15438573],
       [-0.0625611 ,  0.06629116],
       [ 0.22397829,  0.15438573],
       [-0.25358736, -0.49164111],
       [ 0.31949142, -0.55037082],
       [ 0.12846516, -0.25672226],
       [ 0.41500455, -0.13926283],
       [-1.11320552, -1.1083031 ],
       [-0.73115301, -1.54877595],
       [-1.11320552,  0.41866944],
       [-0.63563988, -0.34481683],
       [-0.44461362, -1.13766796],
       [-0.73115301,  0.50676401],
       [-1.59077117, -0.05116826],
       [-0.92217926, -0.4329114 ],
       [-1.39974491, -0.19799255],
       [-1.6862843 ,  0.35993973],
       [-0.73115301,  1.09406114],
       [-0.92217926, -0.31545197],
       [-1.78179743, -1.3138571 ],
       [-1.78179743,  0.4480343 ],
       [-1.87731056, -0.05116826],
       [-0.25358736, -0.31545197],
       [-0.73115301,  0.56549373],
       [-0.34910049, -1.3138571 ],
       [-1.30423178,  0.56549373],
       [-1.01769239,  0.77104772],
       [ 0.31949142, -1.16703281],
       [-0.82666613, -0.25672226],
       [-1.6862843 ,  0.12502088],
       [-1.11320552, -1.60750566],
       [ 0.31949142, -0.72655996],
       [-0.63563988,  0.18375059],
       [-0.15807423, -0.57973568],
       [ 0.22397829, -0.66783025],
       [-0.63563988, -1.60750566],
       [ 0.79705706, -0.31545197],
       [-0.82666613,  0.15438573],
       [-1.11320552, -1.16703281],
       [-0.54012675,  1.91627713],
       [-0.54012675,  0.88850715],
       [-1.20871865,  0.59485858],
       [-0.0625611 , -1.07893824],
       [-0.25358736, -0.93211396],
       [-0.44461362, -0.02180341],
       [-1.87731056,  0.47739916],
       [-1.49525804, -0.4329114 ],
       [-0.25358736,  0.03692631],
       [-0.82666613,  2.29802026],
       [-0.82666613, -0.66783025],
       [-1.59077117,  0.53612887],
       [-0.34910049,  1.32898   ],
       [-1.11320552,  1.41707457],
       [-0.34910049, -0.78528968],
       [-0.34910049,  0.06629116],
       [-1.39974491, -1.22576253],
       [-0.25358736, -0.66783025],
       [-1.20871865, -1.40195167],
       [-1.30423178, -1.37258681],
       [-0.63563988, -1.04957339],
       [-1.11320552, -1.5781408 ],
       [-0.63563988,  0.03692631],
       [-0.54012675,  1.38770971],
       [-0.44461362, -0.78528968],
       [-0.44461362, -0.28608712],
       [-0.63563988, -0.10989798],
       [-1.6862843 ,  0.35993973],
       [-0.44461362, -0.84401939],
       [-0.25358736,  0.06629116],
       [-0.92217926, -1.1083031 ],
       [-1.30423178,  0.41866944],
       [-1.78179743, -1.28449224],
       [-0.82666613, -0.78528968],
       [-1.78179743,  0.00756145],
       [-0.92217926,  0.56549373],
       [-0.34910049, -0.78528968],
       [-0.73115301,  0.27184516],
       [-1.6862843 , -0.99084367],
       [-1.11320552,  0.30121002],
       [-0.25358736, -1.40195167],
       [-0.25358736, -0.9027491 ],
       [ 1.08359645,  0.12502088],
       [ 0.12846516,  1.88691227],
       [ 0.31949142,  0.03692631],
       [ 1.94321462,  0.917872  ],
       [ 0.89257019, -0.66783025],
       [ 1.65667523,  1.76945285],
       [ 1.37013584,  1.29961514],
       [ 0.22397829,  2.12183112],
       [ 0.79705706, -1.40195167],
       [ 0.98808332,  0.77104772],
       [ 1.37013584,  2.35674998],
       [ 2.03872775, -0.81465453],
       [-0.25358736, -0.34481683],
       [ 0.89257019, -0.78528968],
       [ 2.13424088,  1.123426  ],
       [ 1.08359645, -0.13926283],
       [ 0.22397829,  0.2424803 ],
       [ 0.79705706,  0.77104772],
       [ 2.03872775,  2.15119598],
       [ 0.31949142,  0.30121002],
       [-0.25358736,  0.62422344],
       [-0.0625611 ,  2.18056084],
       [ 2.13424088,  0.94723686],
       [-0.25358736, -0.28608712],
       [-0.0625611 , -0.49164111],
       [-0.15807423,  1.65199342],
       [ 1.75218836,  1.85754742],
       [ 0.22397829,  0.06629116],
       [ 0.41500455,  0.30121002],
       [-0.25358736,  2.26865541],
       [ 0.12846516, -0.81465453],
       [ 0.22397829,  1.09406114],
       [ 1.08359645,  0.47739916],
       [ 0.03295203,  1.24088543],
       [ 0.79705706,  0.27184516],
       [ 0.22397829, -0.37418169],
       [-0.0625611 ,  0.30121002],
       [ 0.79705706,  0.35993973],
       [ 1.46564897,  2.15119598],
       [ 0.41500455,  2.32738512],
       [ 0.03295203, -0.31545197],
       [ 1.17910958,  0.53612887],
       [ 1.75218836,  1.00596657],
       [ 0.31949142,  0.06629116],
       [ 1.27462271,  2.23929055],
       [-0.25358736, -0.57973568],
       [ 1.84770149,  1.53453399],
       [ 0.31949142, -0.52100597],
       [-0.25358736,  0.80041258],
       [ 0.60603081, -0.9027491 ],
       [-0.0625611 , -0.52100597],
       [ 0.98808332,  1.88691227],
       [-0.0625611 ,  2.23929055],
       [ 1.17910958, -0.75592482],
       [ 1.37013584,  0.59485858],
       [ 0.31949142,  0.06629116],
       [ 0.22397829, -0.37418169],
       [ 1.94321462,  0.74168287],
       [ 0.70154394,  1.7988177 ],
       [-0.25358736,  0.21311545],
       [-0.15807423,  2.18056084],
       [ 1.65667523,  1.62262856],
       [-0.25358736,  0.06629116],
       [ 0.98808332,  0.59485858],
       [ 0.41500455,  1.123426  ],
       [ 0.22397829,  0.15438573],
       [-0.0625611 ,  0.12502088],
       [ 0.89257019,  2.18056084],
       [ 0.22397829, -0.25672226],
       [ 0.51051768,  1.85754742],
       [ 2.03872775,  0.18375059],
       [ 2.13424088, -0.81465453],
       [ 0.12846516,  1.06469629],
       [ 1.84770149, -1.28449224],
       [ 1.84770149,  0.12502088],
       [ 0.03295203,  0.03692631],
       [ 1.08359645,  0.53612887],
       [ 1.37013584, -0.93211396],
       [ 1.17910958, -0.99084367],
       [ 2.03872775,  0.53612887],
       [-0.25358736, -0.25672226],
       [-0.0625611 ,  0.00756145],
       [ 1.37013584, -1.43131652],
       [ 0.98808332,  2.09246627],
       [-0.0625611 ,  0.68295315],
       [-0.0625611 , -0.2273574 ],
       [ 0.98808332,  2.0043717 ],
       [ 0.31949142,  0.27184516],
       [-0.0625611 ,  0.2424803 ],
       [ 0.12846516,  1.88691227],
       [ 1.08359645,  0.56549373],
       [ 1.65667523, -0.9027491 ],
       [-0.0625611 ,  0.21311545],
       [-0.25358736, -0.37418169],
       [-0.15807423, -0.19799255],
       [ 0.41500455,  0.09565602],
       [ 0.51051768,  1.24088543],
       [ 0.70154394,  0.27184516],
       [ 0.79705706,  1.38770971],
       [ 1.94321462, -0.93211396],
       [ 0.98808332,  0.12502088],
       [-0.0625611 ,  1.97500684],
       [-0.0625611 ,  0.27184516],
       [ 0.22397829, -0.28608712],
       [ 0.41500455, -0.46227625],
       [ 1.27462271,  1.88691227],
       [ 0.89257019,  1.27025028],
       [-0.15807423,  1.62262856],
       [ 0.03295203, -0.57973568],
       [ 0.41500455,  0.00756145],
       [ 0.12846516,  0.77104772],
       [ 0.03295203, -0.57973568],
       [ 1.08359645,  2.09246627],
       [ 0.12846516,  0.27184516],
       [ 0.12846516,  0.15438573],
       [ 1.5611621 ,  1.00596657],
       [-0.25358736, -0.4329114 ],
       [ 0.70154394, -1.1083031 ],
       [-0.15807423, -0.28608712],
       [ 1.37013584,  2.0043717 ],
       [ 1.46564897,  0.35993973],
       [ 0.31949142, -0.52100597],
       [ 0.98808332, -1.16703281],
       [ 0.98808332,  1.7988177 ],
       [ 0.31949142, -0.28608712],
       [ 0.31949142,  0.06629116],
       [ 0.41500455,  0.15438573],
       [-0.15807423,  1.41707457],
       [ 0.89257019,  1.09406114],
       [ 0.03295203, -0.55037082],
       [ 0.98808332,  1.44643942],
       [ 0.41500455, -0.13926283],
       [ 0.22397829, -0.13926283],
       [ 1.84770149, -0.28608712],
       [-0.15807423, -0.46227625],
       [ 1.94321462,  2.18056084],
       [-0.25358736,  0.27184516],
       [ 0.03295203, -0.4329114 ],
       [ 0.12846516,  1.53453399],
       [ 1.46564897,  1.00596657],
       [-0.25358736,  0.15438573],
       [ 0.03295203, -0.13926283],
       [ 0.89257019, -0.55037082],
       [ 0.89257019,  1.03533143],
       [ 0.31949142, -0.19799255],
       [ 1.46564897,  0.06629116],
       [ 1.5611621 ,  1.123426  ],
       [ 0.12846516,  0.21311545],
       [ 0.03295203, -0.25672226],
       [ 0.03295203,  1.27025028],
       [-0.0625611 ,  0.15438573],
       [ 0.41500455,  0.59485858],
       [-0.0625611 , -0.37418169],
       [-0.15807423,  0.85914229],
       [ 2.13424088, -1.04957339],
       [ 1.5611621 ,  0.00756145],
       [ 0.31949142,  0.06629116],
       [ 0.22397829,  0.03692631],
       [ 0.41500455, -0.46227625],
       [ 0.51051768,  1.74008799],
       [ 1.46564897, -1.04957339],
       [ 0.89257019, -0.57973568],
       [ 0.41500455,  0.27184516],
       [ 0.41500455,  1.00596657],
       [ 2.03872775, -1.19639767],
       [ 1.94321462, -0.66783025],
       [ 0.79705706,  0.53612887],
       [ 0.03295203,  0.03692631],
       [ 1.5611621 , -1.28449224],
       [ 2.13424088, -0.69719511],
       [ 2.13424088,  0.38930459],
       [ 0.12846516,  0.09565602],
       [ 2.03872775,  1.76945285],
       [-0.0625611 ,  0.30121002],
       [ 0.79705706, -1.1083031 ],
       [ 0.79705706,  0.12502088],
       [ 0.41500455, -0.49164111],
       [ 0.31949142,  0.50676401],
       [ 1.94321462, -1.37258681],
       [ 0.41500455, -0.16862769],
       [ 0.98808332, -1.07893824],
       [ 0.60603081,  2.03373655],
       [ 1.08359645, -1.22576253],
       [ 1.84770149, -1.07893824],
       [ 1.75218836, -0.28608712],
       [ 1.08359645, -0.9027491 ],
       [ 0.12846516,  0.03692631],
       [ 0.89257019, -1.04957339],
       [ 0.98808332, -1.02020853],
       [ 0.98808332, -1.07893824],
       [ 0.89257019, -1.37258681],
       [ 0.70154394, -0.72655996],
       [ 2.13424088, -0.81465453],
       [ 0.12846516, -0.31545197],
       [ 0.79705706, -0.84401939],
       [ 1.27462271, -1.37258681],
       [ 1.17910958, -1.46068138],
       [-0.15807423, -1.07893824],
       [ 1.08359645, -0.99084367]])

 

# 트레이닝, 테스트용 데이터 분리

from sklearn.model_selection import train_test_split

train_test_split(X, y , test_size=0.25, random_state=1)

[array([[-1.6862843 , -0.60910054],
        [ 0.79705706,  0.53612887],
        [-0.63563988, -1.04957339],
        [ 0.89257019, -1.16703281],
        [-0.25358736, -0.57973568],
        [ 0.12846516,  0.77104772],
        [-0.44461362,  1.27025028],
        [ 1.08359645,  0.47739916],
        [ 0.70154394,  0.27184516],
        [ 0.60603081, -0.9027491 ],
        [ 0.31949142, -0.31545197],
        [ 0.41500455, -0.49164111],
        [-0.25358736,  0.09565602],
        [ 0.31949142,  0.06629116],
        [-1.01769239,  0.77104772],
        [-0.73115301,  1.35834485],
        [ 0.31949142, -0.52100597],
        [ 0.31949142, -0.52100597],
        [-1.6862843 ,  0.35993973],
        [ 0.79705706, -0.84401939],
        [-1.01769239, -1.13766796],
        [-0.25358736,  0.03692631],
        [ 1.08359645, -1.22576253],
        [-0.25358736,  0.62422344],
        [-0.0625611 ,  0.15438573],
        [-0.54012675,  1.38770971],
        [-0.15807423,  0.15438573],
        [-1.6862843 ,  0.47739916],
        [ 0.03295203, -0.57973568],
        [ 1.08359645, -0.99084367],
        [ 0.22397829, -0.13926283],
        [-0.0625611 ,  0.21311545],
        [ 2.13424088, -0.69719511],
        [ 0.98808332,  2.0043717 ],
        [ 0.22397829,  0.03692631],
        [-0.15807423, -0.19799255],
        [-1.11320552,  0.33057487],
        [-0.44461362, -1.13766796],
        [ 0.31949142, -0.55037082],
        [ 0.79705706,  0.12502088],
        [-1.87731056,  0.35993973],
        [-0.0625611 , -1.07893824],
        [-0.25358736, -0.49164111],
        [-0.92217926, -0.31545197],
        [-0.0625611 ,  0.03692631],
        [-1.87731056, -0.75592482],
        [ 0.03295203, -0.25672226],
        [-0.25358736, -0.13926283],
        [-0.63563988, -0.10989798],
        [ 0.89257019, -1.3138571 ],
        [ 0.41500455,  1.00596657],
        [-1.78179743, -1.49004624],
        [-1.59077117,  0.06629116],
        [-0.92217926, -1.1083031 ],
        [ 1.37013584,  2.35674998],
        [ 1.46564897,  1.00596657],
        [-1.20871865,  0.30121002],
        [-1.11320552,  0.06629116],
        [-1.11320552, -1.60750566],
        [ 0.22397829,  2.12183112],
        [-0.25358736, -0.93211396],
        [ 1.84770149,  1.53453399],
        [ 0.31949142,  0.50676401],
        [-1.30423178,  0.56549373],
        [-0.0625611 , -0.52100597],
        [-0.25358736,  1.123426  ],
        [-0.54012675,  0.88850715],
        [-0.25358736,  2.26865541],
        [-1.78179743, -1.28449224],
        [ 0.79705706,  0.35993973],
        [ 0.89257019,  1.03533143],
        [ 0.70154394, -0.72655996],
        [ 0.03295203, -0.55037082],
        [-0.0625611 ,  0.68295315],
        [-0.82666613, -0.78528968],
        [ 0.31949142, -1.16703281],
        [ 0.22397829, -0.28608712],
        [-1.01769239,  0.53612887],
        [-1.01769239,  0.59485858],
        [ 0.12846516,  0.03692631],
        [-1.39974491, -1.22576253],
        [ 1.27462271,  2.23929055],
        [-1.39974491, -0.19799255],
        [-0.0625611 ,  0.30121002],
        [ 0.22397829, -0.66783025],
        [ 0.98808332, -1.19639767],
        [-0.25358736, -0.31545197],
        [-1.11320552, -1.16703281],
        [ 0.12846516,  1.06469629],
        [-0.92217926,  0.41866944],
        [ 2.03872775,  0.18375059],
        [ 0.22397829, -0.37418169],
        [-0.25358736,  0.80041258],
        [-1.11320552,  0.47739916],
        [ 0.31949142, -0.19799255],
        [-0.82666613, -0.66783025],
        [-1.11320552, -1.54877595],
        [ 1.94321462, -1.37258681],
        [-0.73115301, -0.2273574 ],
        [-1.20871865, -1.07893824],
        [ 2.03872775, -1.19639767],
        [-0.92217926, -0.96147882],
        [ 0.12846516,  0.21311545],
        [ 0.89257019,  1.09406114],
        [ 1.37013584,  2.0043717 ],
        [-0.82666613, -0.78528968],
        [-1.01769239,  1.97500684],
        [-1.30423178, -0.4329114 ],
        [ 0.22397829,  0.06629116],
        [-1.59077117, -1.5781408 ],
        [ 1.84770149, -1.28449224],
        [-0.73115301,  1.91627713],
        [ 0.98808332,  1.44643942],
        [ 0.22397829, -0.37418169],
        [-0.25358736,  0.15438573],
        [-0.92217926, -0.75592482],
        [-0.0625611 ,  0.12502088],
        [-0.25358736, -1.25512738],
        [-0.0625611 ,  0.27184516],
        [-0.54012675,  1.47580428],
        [-0.82666613,  0.15438573],
        [-0.73115301, -1.54877595],
        [-1.20871865,  0.27184516],
        [ 0.22397829,  1.09406114],
        [-1.30423178, -1.49004624],
        [ 0.31949142,  0.06629116],
        [ 0.03295203, -0.25672226],
        [-0.15807423,  2.18056084],
        [ 0.41500455, -0.16862769],
        [ 0.98808332, -1.07893824],
        [ 0.98808332, -1.16703281],
        [-1.39974491, -1.46068138],
        [ 1.65667523,  1.76945285],
        [-0.82666613,  2.29802026],
        [ 0.41500455, -0.13926283],
        [-1.01769239, -0.46227625],
        [-0.0625611 , -0.4329114 ],
        [-1.20871865, -1.40195167],
        [ 2.03872775,  2.15119598],
        [ 0.41500455, -0.46227625],
        [-1.01769239, -1.54877595],
        [ 0.89257019, -0.60910054],
        [-0.92217926, -0.31545197],
        [-0.44461362, -0.02180341],
        [-0.63563988, -0.05116826],
        [-0.25358736, -1.37258681],
        [-0.25358736, -1.40195167],
        [ 1.84770149, -1.07893824],
        [-0.73115301,  1.09406114],
        [ 0.79705706, -1.37258681],
        [ 0.31949142, -0.28608712],
        [-0.44461362, -0.84401939],
        [-0.44461362, -0.28608712],
        [ 0.89257019, -0.66783025],
        [-0.92217926, -0.4329114 ],
        [ 0.70154394, -1.1083031 ],
        [-0.25358736,  0.15438573],
        [ 2.03872775, -0.81465453],
        [ 0.89257019, -0.57973568],
        [ 0.89257019, -0.55037082],
        [-0.25358736,  0.27184516],
        [ 0.12846516, -0.81465453],
        [ 0.22397829,  0.2424803 ],
        [-1.39974491, -0.63846539],
        [ 0.12846516,  0.15438573],
        [-0.25358736, -0.37418169],
        [ 1.65667523, -0.9027491 ],
        [-0.63563988,  0.03692631],
        [-0.92217926,  1.56389885],
        [ 0.41500455,  0.30121002],
        [ 0.22397829, -0.31545197],
        [ 0.98808332,  0.12502088],
        [-1.59077117,  0.53612887],
        [ 1.46564897,  0.06629116],
        [-1.01769239, -0.34481683],
        [-0.25358736, -0.66783025],
        [-0.92217926,  0.56549373],
        [-1.11320552,  0.30121002],
        [-0.54012675,  1.38770971],
        [ 0.41500455,  0.15438573],
        [-0.44461362,  2.32738512],
        [ 0.31949142,  0.30121002],
        [-0.63563988, -0.34481683],
        [ 0.12846516,  1.88691227],
        [-1.01769239, -1.46068138],
        [-0.82666613,  0.38930459],
        [-1.78179743,  0.00756145],
        [-1.78179743,  0.4480343 ],
        [-0.82666613, -0.25672226],
        [ 0.12846516,  1.88691227],
        [-0.63563988,  0.18375059],
        [ 0.31949142,  0.06629116],
        [-1.11320552,  0.30121002],
        [ 0.22397829, -0.25672226],
        [-0.25358736, -1.3138571 ],
        [ 0.98808332,  0.77104772],
        [ 0.41500455,  2.32738512],
        [-0.92217926,  0.27184516],
        [ 1.27462271,  1.88691227],
        [-0.44461362, -1.22576253],
        [ 0.41500455, -0.46227625],
        [ 0.70154394, -1.40195167],
        [-0.0625611 , -0.37418169],
        [-0.34910049,  1.24088543],
        [-0.25358736, -0.9027491 ],
        [-1.49525804, -1.25512738],
        [-0.25358736,  0.06629116],
        [ 0.12846516, -0.31545197],
        [-1.6862843 ,  0.12502088],
        [ 0.79705706, -1.1083031 ],
        [-1.11320552, -0.78528968],
        [-0.82666613,  0.38930459],
        [ 1.65667523,  1.62262856],
        [-0.0625611 ,  2.23929055],
        [ 0.70154394,  1.7988177 ],
        [-0.44461362, -0.78528968],
        [ 0.31949142, -0.72655996],
        [ 0.41500455,  0.27184516],
        [-0.0625611 ,  1.97500684],
        [-1.30423178,  0.41866944],
        [-0.54012675, -1.51941109],
        [ 1.75218836,  1.00596657],
        [ 1.08359645, -0.9027491 ],
        [-0.92217926,  0.4480343 ],
        [ 1.46564897,  2.15119598],
        [-0.73115301,  0.56549373],
        [ 1.84770149, -0.28608712],
        [ 0.22397829,  0.15438573],
        [ 0.31949142,  0.27184516],
        [-1.6862843 ,  0.35993973],
        [-1.49525804, -0.4329114 ],
        [-0.25358736,  0.53612887],
        [ 1.5611621 ,  0.00756145],
        [-0.63563988, -1.60750566],
        [ 1.17910958, -0.99084367],
        [ 0.41500455, -0.13926283],
        [-0.34910049, -0.78528968],
        [ 0.41500455,  1.123426  ],
        [ 1.5611621 , -1.28449224],
        [-1.78179743, -1.43131652],
        [-0.15807423, -0.57973568],
        [-0.0625611 ,  0.00756145],
        [-0.15807423,  1.65199342],
        [ 0.89257019, -1.46068138],
        [-0.73115301,  0.27184516],
        [ 2.03872775,  0.38930459],
        [-0.82666613,  0.30121002],
        [ 0.51051768,  1.24088543],
        [ 0.03295203,  0.30121002],
        [ 1.94321462,  2.18056084],
        [-0.15807423,  1.62262856],
        [ 1.08359645, -1.22576253],
        [-1.87731056, -0.52100597],
        [-0.73115301, -1.60750566],
        [ 2.03872775,  0.53612887],
        [-1.01769239, -0.37418169],
        [ 0.03295203,  0.03692631],
        [-0.63563988,  0.56549373],
        [ 0.89257019, -1.04957339],
        [-0.63563988,  0.12502088],
        [-0.0625611 ,  0.06629116],
        [ 0.22397829, -0.37418169],
        [ 2.03872775,  1.76945285],
        [ 1.08359645, -0.13926283],
        [ 0.98808332,  0.59485858],
        [ 0.79705706, -1.40195167],
        [ 1.5611621 ,  1.00596657],
        [-0.25358736, -1.46068138],
        [ 1.08359645,  2.09246627],
        [ 0.98808332, -0.84401939],
        [-0.25358736, -0.4329114 ],
        [-0.15807423, -0.28608712],
        [-0.54012675,  2.35674998],
        [-1.87731056, -0.05116826],
        [-1.30423178, -0.4329114 ],
        [ 0.41500455,  0.59485858],
        [ 0.03295203, -0.31545197],
        [ 2.13424088,  1.123426  ],
        [-1.49525804, -0.19799255],
        [-1.30423178, -1.1083031 ],
        [ 0.79705706, -0.31545197],
        [ 0.98808332,  1.88691227],
        [ 0.31949142,  0.06629116],
        [ 1.17910958, -0.75592482],
        [ 0.03295203,  0.03692631],
        [-1.30423178, -1.37258681],
        [-0.25358736, -0.25672226],
        [-0.0625611 ,  0.30121002],
        [-1.30423178, -1.25512738],
        [-1.11320552,  0.41866944],
        [-0.34910049, -1.3138571 ],
        [-0.15807423, -0.46227625],
        [-1.59077117, -0.05116826],
        [ 0.31949142,  0.03692631],
        [ 2.13424088, -0.81465453],
        [ 1.37013584,  0.59485858],
        [-1.6862843 , -1.37258681],
        [ 1.27462271, -1.37258681],
        [ 0.79705706,  0.27184516],
        [-0.73115301, -0.60910054]]),
 array([[-0.15807423, -1.07893824],
        [ 0.12846516, -0.25672226],
        [-0.15807423,  1.41707457],
        [ 0.12846516,  1.53453399],
        [-1.11320552,  1.41707457],
        [ 0.03295203, -0.13926283],
        [-1.6862843 , -0.99084367],
        [ 1.08359645,  0.56549373],
        [-0.63563988, -1.51941109],
        [ 0.98808332,  2.09246627],
        [-0.34910049,  0.06629116],
        [ 0.12846516,  0.09565602],
        [-0.25358736,  0.06629116],
        [ 0.98808332,  1.7988177 ],
        [ 1.46564897,  0.35993973],
        [ 1.75218836,  1.85754742],
        [ 2.13424088,  0.38930459],
        [-1.01769239, -0.34481683],
        [-0.92217926,  0.50676401],
        [ 2.13424088,  0.94723686],
        [ 0.22397829,  0.15438573],
        [ 1.17910958,  0.53612887],
        [ 0.60603081,  2.03373655],
        [ 0.89257019, -0.78528968],
        [ 0.70154394, -1.28449224],
        [-1.11320552, -1.60750566],
        [ 1.94321462, -0.66783025],
        [ 1.08359645,  0.12502088],
        [ 1.46564897, -1.04957339],
        [ 1.37013584,  1.29961514],
        [ 0.12846516, -0.81465453],
        [-1.78179743,  0.18375059],
        [-1.87731056,  0.47739916],
        [ 1.84770149,  0.12502088],
        [-1.01769239,  0.41866944],
        [-0.73115301,  0.30121002],
        [-1.49525804, -1.51941109],
        [-0.54012675,  0.47739916],
        [ 1.17910958, -1.46068138],
        [-1.78179743, -1.3138571 ],
        [ 0.89257019,  2.18056084],
        [ 1.94321462,  0.917872  ],
        [-0.34910049,  1.32898   ],
        [-1.39974491, -0.10989798],
        [ 1.75218836, -0.28608712],
        [-0.63563988,  1.41707457],
        [ 0.98808332, -1.02020853],
        [ 0.89257019,  1.27025028],
        [ 0.12846516,  0.27184516],
        [ 1.37013584, -0.93211396],
        [-1.30423178, -0.34481683],
        [-0.0625611 , -0.49164111],
        [ 0.41500455,  0.30121002],
        [ 0.79705706, -1.22576253],
        [ 0.41500455,  0.09565602],
        [-0.0625611 , -0.2273574 ],
        [ 2.13424088, -0.81465453],
        [-0.15807423, -0.52100597],
        [ 1.94321462,  0.74168287],
        [ 0.51051768,  1.74008799],
        [-1.01769239,  0.56549373],
        [-1.39974491,  0.35993973],
        [ 0.03295203,  1.24088543],
        [-0.25358736, -0.57973568],
        [-0.15807423,  0.85914229],
        [-0.0625611 ,  2.18056084],
        [-1.11320552, -1.02020853],
        [ 0.41500455,  0.00756145],
        [ 0.51051768,  1.85754742],
        [ 0.03295203, -0.57973568],
        [ 0.79705706,  0.77104772],
        [-0.25358736, -0.75592482],
        [ 0.03295203,  1.27025028],
        [ 0.12846516,  0.03692631],
        [-1.11320552, -0.52100597],
        [ 1.5611621 ,  1.123426  ],
        [-0.44461362, -0.55037082],
        [-1.11320552, -1.5781408 ],
        [-0.73115301,  0.50676401],
        [-0.25358736, -0.28608712],
        [-0.82666613, -1.22576253],
        [ 0.70154394, -1.40195167],
        [ 0.79705706,  1.38770971],
        [-0.54012675, -1.51941109],
        [-1.49525804,  0.33057487],
        [-1.20871865,  0.50676401],
        [ 0.98808332, -1.07893824],
        [-0.25358736, -0.34481683],
        [ 0.89257019, -1.37258681],
        [-1.11320552, -1.1083031 ],
        [-0.54012675,  1.91627713],
        [ 2.13424088, -1.04957339],
        [ 1.37013584, -1.43131652],
        [ 0.03295203, -0.4329114 ],
        [-1.20871865,  0.59485858],
        [ 1.94321462, -0.93211396],
        [ 1.08359645,  0.53612887],
        [-0.0625611 ,  0.2424803 ],
        [-0.25358736,  0.21311545],
        [-0.34910049, -0.78528968]]),
 82     0
 367    1
 179    0
 27     1
 89     0
       ..
 255    1
 72     0
 396    1
 235    1
 37     0
 Name: Purchased, Length: 300, dtype: int64,
 398    0
 125    0
 328    1
 339    1
 172    0
       ..
 300    1
 277    1
 289    1
 260    0
 173    0
 Name: Purchased, Length: 100, dtype: int64]

 

# 변수로 지정하여 메모리에 업로드

X_train, X_test, y_train, y_test = train_test_split(X, y , test_size=0.25, random_state=1)

 

# 로지스틱 리그레이션 과 K-NN 중 이번엔 K-NN classifier

#  regressor는 수치 예측 => 데이터를 확인하고 목적에 따라 수치형인지 분리형인지 구분 후 import 주의

 

from sklearn.neighbors import KNeighborsClassifier

 

# 깡통 인공지능 생성

# () 파라미터안에 n_neighbors 를 적지 않으면 디폴트 5로 동작됨

# n_neighbors 파라미터는 K-NN 알고리즘에서 사용할 이웃의 수를 지정하는 값

# n_neighbors 값은 일반적으로 홀수로 설정하는 것이 좋은데, 이웃의 수가 짝수일 경우 동점이 나올 가능성이 있어 분류 결과가 명확하지 않을 수 있기 때문


classifier = KNeighborsClassifier(n_neighbors= 7)

 

# 학습 .fit

classifier.fit(X_train, y_train)

 

# 에측 실행 .predict

classifier.predict(X_test)

array([0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1,
       1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0,
       1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
       0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0,
       1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0], dtype=int64)

 

# 예측값이므로 pred로 저장

y_pred = classifier.predict(X_test)

 

# 수치형은 confusion score , 분류형은 매트릭스
from sklearn.metrics import confusion_matrix, accuracy_score

 

confusion_matrix(y_test, y_pred)

array([[49,  9],
       [ 3, 39]], dtype=int64)

 

cm = confusion_matrix(y_test, y_pred)

 

# 직접 정확도를 계산해보자. 제대로 맞춘 데이터의 개수를 더하고, 전체데이터 계수로 나누면 된다.

(49 + 39) / cm.sum()

0.88

ㄴ 88%의 정확도

 

# 명령어로 확인

accuracy_score(y_test, y_pred)

0.88

 

다음 게시글로 계속

728x90
반응형